I thought it would be interesting to plot summaries of the details using the open source statistical computing environment R Project. The following are the plots from the National Registry of Exonerations database.
# National Registry of Exonerations
# pie charts
library(XML)
u <- "http://www.law.umich.edu/special/exoneration/Pages/detaillist.aspx"
listu <- readHTMLTable(u)
exondf <- listu[[7]]
data <- exondf[24:nrow(exondf),]
names(data) <- as.character(unlist(exondf[4,]))
# transform data
data$Age <- droplevels(data$Age)
data$Race <- droplevels(data$Race)
data$State <- droplevels(data$State)
data$Crime <- droplevels(data$Crime)
data$Sentence <- droplevels(data$Sentence)
data$Convicted <- droplevels(data$Convicted)
data$Exonerated <- droplevels(data$Exonerated)
data$AgeCNV <- as.numeric(as.character(data$Age))
data$ConvictedCNV <- as.numeric(as.character(data$Convicted))
data$ExoneratedCNV <- as.numeric(as.character(data$Exonerated))
data$AgeCNV_floor <- floor(data$AgeCNV/10)*10
data$ConfinedYrs <- data$ExoneratedCNV - data$ConvictedCNV
data$ConfinedYrs_floor <- floor(data$ConfinedYrs/5)*5
# plot pie charts
LABELS <- c("10-19","20-29","30-39","40-49","50-59","60-69","")
pie(table(data$AgeCNV_floor), labels=LABELS, main="Age Exonerated")
pie(table(data$Race), main="Race")
pie(tail(sort(table(data$State)),10), main="Top 10 States")
LABELS <- c("0-4","5-9","10-14","15-19","20-24","25-29","30-34","35+")
pie(table(data$ConfinedYrs_floor), labels=LABELS, main="Years Confined")
4 comments:
You wrote it well. I really like such things.
anal fuck
Thanks for this great article. It’s useful.
Physics Assignment Help
Nice post.Keep sharing. Thanks for sharing.
For Private Finance in Bangalore. Contact us.
Thanks for sharing the fantastic post.
Visit website for best astrological services contact. Vashikaran Astrologer in Shivamogga
Post a Comment